Добавить новость
103news.com
Все новости
Май
2025

Периодическая система машинного обучения

0

В MIT создали первую “периодическую таблицу” методов машинного обучения, при которых в исходных данных не задаются конкретные признаки (representation learning). Оказывается, многие (а может оказаться, что и все) методы, даже совсем друг на друга не похожие, сводятся по существу к одной и той же формуле. Причем не слишком сложной по своей форме. Работу представили в конце апреля на конференции ICLR 2025.

“Обучение представлениям” или “обучение признакам”, или “обучение представлений”, — кажется, в русскоязычной ML-среде нет единого устоявшегося термина, так что будем использовать понятный “representation learning”. До появления representation learning для создания модели нужно было вручную выделить признаки данных, по которым модель будет обучаться и делать прогнозы. Для задач попроще и попонятнее это рабочая схема, но для сложных задач обработки текста и изображений она практически не применима. Выделить вручную признаки, по которым можно определить, что на картинке изображён, например, кот, а не цветок — задача нетривиальная. Человек с этим справляется слабо, поэтому возникла идея отдать поиск определяющих признаков на откуп машине — пусть модель сама определяет, какие параметры будут ключевыми. Этот переход к representation learning стал одной из фундаментальных основ, которые потом привели к прорывному развитию ML.

За прошедшие десятилетия накопилось огромное множество техник на основе representation learning, которые используют разные архитектуры и вид. А в последние годы новые способы появляются чуть ли не каждый день. Какие-то приспособлены под конкретные задачи, другие более универсальные. В каких-то прослеживается схожесть, другие выглядят принципиально новыми. Понять, чем они действительно схожи и различны, — задача во-первых просто интересная, а во-вторых и очень важная, так как это поможет эффективнее применять различные техники.

Читать далее






Губернаторы России





Губернаторы России

103news.net – это самые свежие новости из регионов и со всего мира в прямом эфире 24 часа в сутки 7 дней в неделю на всех языках мира без цензуры и предвзятости редактора. Не новости делают нас, а мы – делаем новости. Наши новости опубликованы живыми людьми в формате онлайн. Вы всегда можете добавить свои новости сиюминутно – здесь и прочитать их тут же и – сейчас в России, в Украине и в мире по темам в режиме 24/7 ежесекундно. А теперь ещё - регионы, Крым, Москва и Россия.

Moscow.media


103news.comмеждународная интерактивная информационная сеть (ежеминутные новости с ежедневным интелектуальным архивом). Только у нас — все главные новости дня без политической цензуры. "103 Новости" — абсолютно все точки зрения, трезвая аналитика, цивилизованные споры и обсуждения без взаимных обвинений и оскорблений. Помните, что не у всех точка зрения совпадает с Вашей. Уважайте мнение других, даже если Вы отстаиваете свой взгляд и свою позицию.

Мы не навязываем Вам своё видение, мы даём Вам объективный срез событий дня без цензуры и без купюр. Новости, какие они есть — онлайн (с поминутным архивом по всем городам и регионам России, Украины, Белоруссии и Абхазии).

103news.com — живые новости в прямом эфире!

В любую минуту Вы можете добавить свою новость мгновенно — здесь.

Музыкальные новости




Спорт в России и мире



Новости Крыма на Sevpoisk.ru




Частные объявления в Вашем городе, в Вашем регионе и в России